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SIMPLE THEORY OF THE INPUT COUPLER TO
THE 94 GHz NRL GYROKLYSTRON

1. Introduction:

In the NRL 94 GHz gyroklystron experiment, the input coupler is designed using
a modern Maxwell’s equation solver, HFSS. While this is a useful and accurate design
tool, it has drawbacks in that it uses a very great amount of computer time. A typical run
for the NRL input coupler typically takes several hours, and to calculate the coupling
efficiency as a function of frequency typically takes many runs. This is only for one
design; as parameters of the cavity, waveguide and coupling hole are varied, the amount
of computer time can become very large indeed. Furthermore, there are other difficulties
with HFSS, principally that it cannot easily calculate either the Ohmic Q of the cavities,
or the beam loading of the main cavity. Usually these effects are added onto the solution
after the fact. The purpose of this memo is do develop an approximate, but much simpler
formulation for the coupling problem. This is to use the dipole approximation for the
coupling apertures. The result is set of equations which can be numerically calculated
very simply, so that many different runs can be done very quickly.

In our case, the input waveguide transmits a mode of unit amplitude into a coaxial
coupling cavity. It excites the TE4; standing mode there. On the inner wall of the coaxial
cavity are 4 slots to couple into the TEg; mode of the main cavity. However because of
the symmetry, it is also possible that it will couple to the TE4; mode in the main cavity.
This would be a competing mode. Thus there are 4 quantities to calculate, the reflection,
the amplitude of the mode in the coaxial cavity, and the two possible modes in the main
cavity. From this, we would also like to calculate the excitation of the beam.

The advantage of the dipole excitation theory is that it is capable of doing just
this, and of calculating it very simply. The drawback is that it is not very accurate. The
approximation is only valid if ka<1, where a the size of the coupling hole and k is the
wave number of the mode. The dipole moment of the hole usually is proportional to a°,
so that once the approximation begins to break down, it loses accuracy very fast as a
increases. However alternatively, there may be other coupling schemes with a larger
number of smaller holes. In any case, because the theory is so relatively simple, and can
be evaluated numerically very easily, it seems useful to develop this theory as an analytic
guide to the coupling problem. At the very least it should be this, and possibly it will be
more useful still.

It is also possible that the coaxial coupler can be regarded as a waveguide going
around the main cavity, a waveguide which propagates modes in the positive and negative
0 directions. Because these are traveling waves, the phases at each coupling hole now
depend on the frequency of the input wave. Then the joint between the main input
waveguide and the coaxial waveguide can be regarded as a waveguide T which can in
turn be specified by a scattering matrix S. The key then is to design the T so as to
optimize the coupling. As we will see, this means mainly designing the T to have the
proper choice of direct reflection coefficient at the input waveguide. In terms of the
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scattering matrix, one can then solve the coupling problem. The most accurate solution
would involve a reflection and transmission coefficient calculation every time the coaxial
waveguide mode propagates across one of the coupling holes, (ie dipoles) to the main
cavity. This is fairly complicated, although not nearly as complicated as solving the
entire coupling problem with HSFF. In this memo we formulate a much simpler, but
approximate approach to the coupling through a waveguide T, an approach which should
take only seconds of computer time to evaluate. We model the excitation of the main
cavity by the damping of the waveguide mode as it propagates in 6. By a simple energy
conservation argument, we solve for this coupling coefficient, and thereby totally solve
the coupling problem. This technique is only slightly more complicated than the dipole

coupling problem



2. Coupling of Cavities and Waveguides
A. General Formulation

The input to the 94 GHz gyroklystron is coupled to input source through
fundamental mode waveguide. This waveguide ends in a metal plate in which apertures
are cut (the apertures may in fact be the entire waveguide area). On the other side of
these apertures is a coaxial cavity, which itself encircles the main cavity. (This coaxial
waveguide is approximately like a fundamental mode waveguide which makes a circle
around the main cavity.) The joining of the waveguide and coaxial cavity is actually like
a waveguide T. The cavities are tuned so that the TE4; standing mode in the coaxial
cavity has the same frequency as the TEo; mode in the main cavity. Since the waveguide
T couples to odd modes in E; in the coaxial cavity, the coaxial mode has a node in E; at
the position of the waveguide coupling. Around the azimuth of the coaxial cavity are 4
equally spaced slots for coupling to the main cavity. As the main cavity only has a B, at
the wall, these slots are at maxima of B, in the coaxial cavity. As these slots all have the
same value of B, in the coaxial cavity, it naturally couples to a TE¢; mode in the main
cavity. However, it might also couple to a standing TE4; mode in the main cavity also. A
diagram of the coupling configuration, as well as the electric field configuration in a
waveguide T is shown in Fig.(1).

We now derive the basic equations for the coupling. We first consider the
cavities, then the waveguide. The cavity fields are governed by Maxwell’s equations

VxB =4nJ/c - i(w/c)E (1a)
VxE = i(w/c)B (1b)

where a time dependence exp-iwt has been assumed. We now assume that the field in the
cavity can be expanded into a complete, orthogonal set of eigenfunctions of Eqs.(1 a and
b) with J=0, and satisfying the boundary condition that E,, and B, vanish on the cavity
walls. These eigenfunctions are denoted by E,, and B,, where the eigenfunction is @,
and the normalization of the electric and magnetic fields is given by

I d3r En*.En’ = I d3I' Bn*.Bn’ = Vaﬂn’ (2)

where V is the volume of the cavity. Thus, E, and B, are dimensionless, and we have
used the fact that the electric and magnetic fields have the same stored energy in a cavity.

Take the dot product of Eq.(a) with E,* and Eq.(b) with B,*, subtract and get:
io/c{Bp*eB +E,*eE} + B,*eVXE - E,*eVxB = -(47/c)JeE 3)

Using standard vector identities, and also using Eqs.(1a and b) for the eigenfunctions, we
find the result

i[(@-0n)/c] {En*oE + B,*eB} + Ve[Ex B,* - E,*xB] = -(47l/c)eE*, @)

I
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Now decompose the electric and magnetic field in the cavity into summations over the -
eigenfunctions —

B= ZnAan E=Y,A.E, &) wy

Here, A, is a scalar with dimension electric field and B, and E,, are dimensionless
vectors. Then integrate Eq.(4) over the volume of the cavity and find

2iV[(0-n)/c]An + JwansdSe(ExB* + E *xB) +

[aperturesdS®(EXB,* + E,*xB) = -(4/c)|d’rJeE* (6)

The integral over the wall appears to vanish because both E and E;, vanish at a conducting
wall. However, if the wall has some finite conductivity, E does not actually vanish at the
wall, but this term in the wall integral represents the loss due to Ohmic dissipation in the
wall. If only a single mode is excited in the cavity, this term represents the Ohmic losses
for that mode. If more than one mode is excited, the dissipation does not necessarily
separate out into a summation over the separate modes because there is in general no
orthogonality relation between the surface integrals over the walls for the different
eigenfunctions. That is there can be cross terms. However in practice, the eigenfunctions
are often separable in one or more of the variables. For instance in our case, the main
cavity is cylindrical, so that this cross term of the wall integral will vanish as long as the
modes have different azimuthal or axial eigenvalues. There will only be cross terms
between modes with different radial eigenvalues, but the same azimuthal and axial
eigenvalue. For our case, we consider only the TEy;, and TE4; modes in the main cavity,
so there is no cross term, and the Ohmic Q’s of each mode can be considered separately.
We also note that the Ohmic Q for modes due to wall resistivity is not pure real, in fact
the real and imaginary parts are equal. This arises from the fact that at the surface of the
conductor, the parallel electric field is given by [/8no]? (1-i)nxHp where G is the
conductivity of the wall and Hj, is the parallel magnetic field at the wall. Thus if we
denote Qo as a real quantity, the Ohmic Q, denoted Q, is given by

Qo = Qon(1+1) @)
where the sign of the imaginary part is such as to give a decrease in frequency.

Now consider the integral over the apertures. There are two separate apertures
which we consider here, first the apertures which are the coupling holes, and secondly,
other apertures. For instance theTEq; mode in the main cavity has an aperture
representing the beam tunnel. These apertures give rise to loss and frequency shift for
each mode, the diffractive Q of the mode. Again, we assume that the various symmetries
allow us to consider the diffraction Q’s for each mode without cross terms. We model
the effect of these apertures and the wall losses with a total Q (not necessarily real) for all
of them. The J on the term on the right hand side then represents the current from the
electron beam. Hence, Eq.(6) reduces to

2iV[(@r+(0n/2Qn)-0n)/C)An + JapernuresdSO(EXB,*) = ~(41/c)[d’rJoE,* (8)

The surface integral in Eq.(8) now denotes an integral only over the coupling apertures
and dS denotes an outward normal from the cavity. Also, in writing Eq.(8) above, we




have made use of the fact that E;’ vanishes in the aperture. Thus the integral over the
aperture involves the exact electric field in the aperture dotted into the complex conjugate
of the magnetic eigenfunction.

To continue, we work out a similar formulation for the waveguide modes. For the
waveguide, the electric field is given as a summation over normal modes again, where the
normal modes are normal modes of the transverse Laplacian. The dependence on z and t
is given by expi(tkz-wt). The plus sign is a mode going to the right, and the minus sign
is a mode going to the left. They are independent solutions, but they have the same
transverse eigenfunction for transverse electric field. In fact the transverse and
longitudinal eigenfunctions for right and left propagating modes are related by

E..=E, B,1=-B. E,.=-E,; B.;=-B., )

Now say that the waveguide modes are also expanded in a complete orthogonal set. Let
us denote the perpendicular field of the eigenfunction by E,w, where w in the subscript
denotes that it is a waveguide field rather than a cavity mode. Since the cavity is
rectangular, the transverse mode in each direction is a standing mode, SO we can assume
without loss of generality that E;wy is pure real. In this case, the normalization is chosen
to be

jdzr Ejwn® Ejon = Aﬁnn’ (10)

The transverse magnetic field is given by Biwa = 47, x E wn Where Z=kc/® for TM
mode, and Z = wkc for a TE mode. It is the impedance of the waveguide mode. We
now assume that for the frequency considered, there is only one propagating mode in the
waveguide. Now the transverse electric field in the waveguide is given by

El.w = [D+ +D-] E.Lwl + Zn:ZDn E.Lwn (l 1)

where the D’s are z dependent coefficients and the E’s are taken as the transverse field at
the position of the screen or diaphragm in the waveguide. The D;’s account for the
incident and reflected waves, and the other D’s denote the evanescent waves. Far away,
they are exponentially evanescent and negligible. As usual, the E’s are dimensionless
transverse vectors, and the D’s are scalars with dimension electric field. Multiplying
Eq.(11) by E, w1, integrating over a cross sectional area, and making use of the
orthogonality relations, we find

D*+D =A" fdzr Eiw® Eivi (12)
Note that E,, the exact transverse electric at the screen. Since it is zero on the
conducting surfaces the integral in Eq.(12) is taken only over the apertures. Eivw1, as
always, is dimensionless. Since E u1 = ZiX Byw1, we find that

D'+D =Z A" Iapenures (Erwx Biw1) ¢dS (13)

where dS is an outward pointing normal. Thus the aperture coupling term for the
waveguide modes is very much the same as that for the cavity modes.



B The Normalized Eigenfunctions and Eigenvalues

Here we specify the normalized fields for the various cavities and waveguides. The
main cavity will be specified with a subscript 1, and the coaxial cavity with the subscript
2. In the main cavity we consider only the TEy; and TEz; modes, so these are denoted
with subscripts 01 and 04. In the coaxial cavity, we consider only the TE4, mode, so this
is denoted with simply the subscript 2. We also consider only the fundamental TEg,
waveguide mode, and for this we use the single subscript w. The inner cavity has a radius
a and length L, extending from -L/2 to +L/2. Considering only the lowest order axial
mode, we find for a mode with azimuthal mode number p,

Einp = K(cosnz/L) i,xVx'¥, and ¥ = J(knpr)cospb _ (14a)

where we have assumed that the theta dependence is a standing mode and Jy(knpa)=0.
Here, knp2 = (m’c)2 - (1t/L)2. The cos6 choice (rather than sin0) is the proper orientation
for the coupler we are using. Also, for the modes we will be considering, p is either O or
4. The coefficient K is determined so that the eigenfunction is properly normalized.
Using integral relations for the Bessel functions, we find

K = 2K,a/M, where K, =2"? for p>1, and K, =1 for p=0, and
M = (Xnp” - P°)"“Tp(Xnp) (14b)

where X, is the n™ zero of J,’ (that is kny=xnp/a). Since it is a TE mode, this is the only
component of the electric field. The magnetic field is given by

Bi.np = -K(mic/wL)(sinnz/L) V{ J(knpr)cospO} (14c¢)

and

Bimp = K(ic/o)[(avc)? - (WL)? )(sinnz/L) Jp(knpr)cosp (14d)

Now we consider the coaxial waveguide. It is a TE mode in the cavity, where B, is a
linear combination of Bessel and Neuman functions. For the lowest order axial mode, the
dispersion relation is

Jp’(ka)Np’ (k[a+b]) - I’ (k[a+b])Np’(ka) =0 (15)




where as before, k> = ((:)/c)2 - (1r/Lc)2 . The eigenfunction is a standing wave in 0 with a
node in E, at 6=0. We approximate it as a fundamental wave in a (bent) waveguide, so

Ey: = (4/K,)*sinpBcos(nz/Le) (16a)
By, = ~(4/K,)"A(ipc/[a+b/2])cospBeosnz/Le (16b)
Byo = -(4/Kp)"*(mic/@Lc)sinpOsin(mz/Lc) (16c)

where as before, K, = 2! for p21, and K, =1 for p=0. If one assumes the eigenfunction
is as a fundamental mode in a waveguide, an approximate eigenvalue is @ = (me/Lo)* +
(pc/[a+b/2])2. For the coaxial mode, we only consider p=4.

Finally we consider the fundamental mode waveguide. As the waveguide is
oriented, r is what would usually be the z component of the guide, and 0 and z are the two
perpendicular components. For the waveguide oriented with respect to the coaxial cavity
so that it makes an E plane T, we have

Euo =2'"cos(nz/Ly) By, = (%) (kc/®)Ewe Buy: -i(nc/6ly) Ewe  (17)

Here, the + denotes the incident or reflected wave into the cavity. The overall minus in
the expression for By, arises because in the configuration shown in Fig. (1), the incident
wave travels to the left. The dispersion relation for the waveguide is o= (kc)2 + (n/Lw)z.

This then specifies the eigenfunctions and eigenvalues for the main cavity, the coaxial
cavity and the waveguides.

C. The calculation of -(41r/c)fd3rJ-E..*

To calculate the above quantity, we must calculate the current generated on the
electron beam, by the fields in the waveguide. As we consider only two modes in the
main cavity, the TEq; and the TE4; which have different 0 symmetries, there is no current
generated by one mode which affects the other, at least in linear theory. Also, since the
beam is placed to maximize the interaction with the TEq; mode, and thereby has a weaker
interaction with the TE4; mode, we consider only the current generated by the former.
Naturally the beam current has no effect on the coaxial cavity or waveguide mode. To



calculate the current, we use the linearized Vlasov equation. To simplify this, we assume o
the beam is only weakly relativistic, so that the current is generated only by the electric ot
field of the cavity mode. In the transverse plane, we use as independent variables the o

guiding center positions and the perpendicular coordinates in momentum space. That is
the momentum variables are p,, p., and ¢ where ¢ is an azimuthal angle in momentum
space. That is

Pr=picos(¢+[2mz/p,]-8) and pe = p.sin(¢+[Qmz/p,]-6) (18)

where 6 is the azimuthal angle in real space and Q is the nonrelativistic cyclotron
frequency of the electron. In these coordinates, the linearized Vlasov equation is

[-io+(p,/Ym)d/oz]f = eEedfy/op= 2eEgpodfp/d pi2 = G(z)  (19)

where f; is the unperturbed distribution function. For the TEq; mode in the main cavity,
the right hand is 2eEqpgdfo/d p 2, where we have made use of the assumption that the
unperturbed distribution function does not depend on ¢. The solution to Eq.(19) is

z

f = expliymz/p,lfodz’ exp[-iymz/p,]G(z’) (20)
and the current in the 0 direction is
Jo =- J&’p(epo/ym)L. 21)

and what we want is -(41/c)Jd*rJeE,*. This is

-(4n/c)|d’rJoEx* = (4me’chym)fd’rd’plodzp, %0fy/d pi® AroE10*(r.z)expioz-z")E(r,z’) (22)

where 0=(m/p,)[Y®-€2], Ao is the amplitude of the TE;o mode in the main cavity (having
dimension electric field), and E,q is the normalized, dimensionless eigenfunction of that
mode. Also, we assume that in E, the particle position and guiding center position are
the same. Furthermore, in writing Eq.(22), we have assumed that only the slowly varying
terms in the oscillating exponential integral contribute. These are all standard
approximations in the calculation of oscillating currents in gyrotrons at the cyclotron
frequency. To proceed, we assume that the unperturbed distribution function is given by

fo = (U2mrpev,) [8(r-16) 21 { 8(p.-P20)d(pL° - Prod)/T) (23)

where I is the beam current and r, is the beam radius. Furthermore, to make the result
somewhat simpler analytically, we approximate the z dependence of the eigenfunction




with n”lzexp-(z/L)z, where the lower limit of the z integral is not taken as minus infinity.
The z and 2’ integrals can be done almost analytically. The result is

n"J.:dzI.,,dz’ exp-[(Z+z’ )L +ioz-2")] =0.5L*{exp-(0L)/2 -iG(oL)} (24)
where
G(y) = [1/2n"Jexp-(y*/2) I.:du(exp-uz) (erfu)(sin2yu) (25)

where G is a function that must be evaluated numerically. Putting this together, we find
that the right hand side of Eq.(22) can be included in the left hand side as an effective Qg,
the reciprocal of which can be added to all other relevant reciprocal Q’, for instance the

Ohmic Q. We find

1/2Qp = [TeL/yomyvz:na’} | Eo(ry) | > 9/0p.* { pu’fexp-(l)’/2 -iG(oL)]}  (26)

in taking the derivatives with respect to p 12, notice that o depends on p 1% so that
9/9p,* = [ma;eL/p;y(me)’ 19/d0L. 27)

Also, all p’s are evaluated at the unperturbed beam momentum. Notice that the real part
of Qg has a negative contribution for positive o (frequency above the Doppler shifted
cyclotron frequency) as is expected for a gyrotron. Also it has an imaginary part
corresponding to the beam generated frequency shift of the TEq; mode in the main cavity.
By incorporating the Qg in the formulation, on can account for the beam loading in a
straightforward way within the total formulation of the coupling problem.

D. Dipole Approximations to the Aperture Couplings

We now turn to an evaluation of the JapmumstO(ExBn*) term in the equation for
A, or D. The dipole approximation consists of two parts, first assuming that the coupling
apertures are very small compared to k!, and secondly, assuming that the resulting '
integrals can be approximated as those from the electrostatic or magnetostatic
approximation. The quantity B,* are known from the knowledge of the normalized
eigenfunctions. Assuming that the coupling aperature is small, this can be approximated

as
B,* = B,*(0) + Ypxp 0/0xs Ba*(0) (28)

The first term simply gives

10




[aperturesdS®(EXBo*) = [peruures Ba*(0) ® [nxE] da (29)

where n is the unit normal to the aperture, and da is now the scalar unit area we are
integrating over. Here, the term in the brackets is the exact tangential component of the
electric field within the aperture. It clearly plays the role of an effective magnetic
moment of the aperture. Note also that in Eq.(29), the unit vector n is defined as the
outward pointing normal. Thus, in considering the dipole approximation to whatever is
on the other side of this cavity (another coupling cavity or waveguide), its unit vector also
points outward (into the first cavity) , so that its effective magnetic moment changes sign.

Now let us consider the next term in the approximation. It is
JaperuresdS®(ExXp xp 9/0xp Bn(0)*)

As in Jackson, it is convenient to separate this into an anti-symmetric and a symmetric
part. Using the complete anti-symmetric tensor to describe the cross product, assuming
summation over repeated indices, and for convenience dropping the (0) and mode index
n, we find the result is

apertures da nig;Eixp{[0Bi/0xp - 0Bp/dxi] + [0B/oxp + OBp/dxi]} (30)

As Jackson shows, the symmetric part contributes to a higher multipole moment. Using
Maxwell’s homogeneous equation, the antisymmetric part reduces to

10/2C apertures 02 Ni€ijkEiXpEno*(0)€apk = -i/2C]pertures da E*(0) o{n[Eex]} €29

Clearly the quantity dotted into E,*, which is oriented normal to the aperture, plays the
role of an effective electric dipole moment. By the same logic as with the magnetic
moment, it changes sign when going from one side of the aperture to the other. Thus the
aperture coupling terms can be approximated as

-2mion/c[per ®*En*(0) - meroB,*(0)] - (32)
where
Pet =0/4Tfsperures da Eox  and  mgr = ¢/2Mi0aperures da D X E (33)

In the expressions for pes and me, it is only the component of the electric field tangential
to the aperture that contrubutes. In each case, it is the exact electric field.

The small aperture coupling problem then reduces to calculating the electric and
magnetic dipole moments. As Jackson points out, for kx<<1, the solution to Maxwell’s
equations near the hole reduces to the solution of the electrostatic or magnetostatic
problem. Imagine a small hole in an infinite conducting sheet with a static electric field
perpendicular to the sheet on one side, and a different value of the field on the other side.

11
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The effective electric dipole movment of an aperture with
a discontinuity of E,
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For simplicity, we consider the case of the field vanishing above the screen, as shown in
Fig (2A). The field has a configuration of a dipole moment in the middle of the hole, but
with one variation. For a true dipole, the tangential electric fields above and below the
sheet would be anti-parallel, whereas the in Fig (2A), the outward radial fields above and
below the aperture are both outward, that is the sign of the dipole changes above and
below the hole.

The case of a magnetic dipole, for a magnetic field tangential to a conducting
sheet with an aperture is quite analogous. Here there are different magnetic fields above
and below the sheet. The configuration is shown in Fig (2B). It is quite analogous to the
electric case, except the overall sign of the magnetization is reversed. The electrostatic
or magnetostatic problem of the infinite conducting sheet with apertures, which Jackson
solves for a circular hole, then can be used to define the effective dipole moments. The
effective electric moment is given by an electric polarizability P time the difference in
normal electric field at the surface. Here P is a scalar. The magnetic polarizability is
given by a magnetic polarizability M times the difference in tangential magnetic field at
the surface. Here M two dimensional tensor, because the tangential field is a two
dimensional vector. Thus

Per=PAE,,, and me =M eAB (34)
For a circular hole of radius R, Jackson gives the result
P= -R’/3n M = 2R%3n (35)

where for the circular hole, M is a scalar. For an elliptical aperture shown in Fig.(3), Gao
shows that the polarizability is given by

P = -mtl;(1-e02)/3E(eo) (362)
M = 1l eo?/3[K(eo)- E(eo)] (36b)
My, = el eo’(1-e0°)/3[E(eo)- (1-60”) K(eo)] (36c)
M, = My =0 (36d)

where ey is the eccentricity of the ellipse, g = (1;-12)/1;, and the K’s and E’s are the
complete elliptic integrals of the first and second kind. The expressions for elliptical
apertures may be useful approximations to the polarizabilities of the rectangular apertures
used in the NRL gyroklystron experiment. Generally, calculating these P’s and M’s are
quite difficult. They involve solving Laplace’s or Maxwell’s equations with mixed
boundary conditions. Other approximations have been given for corrections due to the
finite thickness of the sheet for a circular aperture, and results have also been tabulated
for electromagnetic effects in a circular hole in a sheet of non-zero thickness®.
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3. Simple Waveguide Coupling to a Cavity.

We consider here the simplest case of a fundamental mode waveguide coupling to
a cavity which can have only a single mode in it. The waveguide runs perpendicular to
the cavity wall and ends there in a wall with an aperture in it. The coupling is through
this aperture, which is assumed small enough that the dipole approximations are valid.
The value of a field quantity at the coupling hole is then given by the mode amplitude (A
for the cavity and D for the waveguide) times the appropriate component of the
normalized eigenfunction (that is the normal electric field or the tangential magnetic
field) at the center of the coupling hole. Since the rectangular waveguide propagates only
fundamental mode, there is only a single component of B tangential to the screen between
the cavity and waveguide, and the component of E normal is zero for a TE mode. If the
aperture is elliptical, with its axis oriented along the magnetic field, the magnetization
then is a scalar as far as the waveguide is concerned. We will assume that only that
component of magnetic field is excited in the cavity at the coupling hole, but will discuss
later the effect of other magnetic components and the normal electric field in the cavity.

For the normalized field components, we will use the notation of a subscript w for
waveguide fields, and no subscript for cavity fields. Also, where we us a B or E, itis
assumed to be at the center of the coupling hole. Then the equation for the cavity field is

(©+ i00/2Q - tp)A = 2V V{M[(D" - D')By, -BA]}B’.'= (37)

where ay is the frequency of the cavity mode. On the right hand side of Eq.(37) above,
the D’s are subtracted because the magnetic coupling involves the tangential magnetic
fields i the waveguide. Since the D’s represent electric fields, the magnetic field of the
forward and backward propagating modes have opposite signs. The equation for the
waveguide modes is

D"+ D = -2iaZ/oc{ M[(D* - D)By -BA]}By (38)

where, recall Z is the impedance of the waveguide mode, and to avoid confusion with the
cavity mode amplitude, o is now the cross sectional area of the waveguide. Thus we have
two equations for the coupling of the cavity and waveguide mode.

When looking at the cavity mode, one effect is the self interaction term on the
right hand-side. Since this term is pure real, it corresponds to a frequency shift resulting
from the coupling hole. Clearly it is pure real, and in addition, the signs are such that
it corresponds to a decrease in frequency, since M>0. If the cavity mode had the other
component of the magnetic field, or else a normal component of the electric field, this
result would not have changed. The additional terms in the cavity mode equation,
Eq.(37) would still correspond to a frequency decrease.

15
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To start, we consider the case where there is no incident electric field. In this
case, there are two homogeneous equations for the two unknowns A and D". For the case
of small M, the dominant effects are the frequency shift just discussed, which is
proportional to M, and a damping, proportional to M?, which is

v = 40’ZM?B,| B| ¥aV[1-2ioMB,.Y/at] (39)

Since v has an imaginary part as well, there are other corrections to the frequency shift
proportional to higher powers of M. To lowest order in M, the coupling to the waveguide
may be modeled by coupling Q, which is

1/2Q. = 40ZB,*M?|B| Yav (40)

Finally, it is not difficult to show that if there is an incident wave, D* # 0, and the cavity
is characterized by Q=oo, the reflection coefficient D/D* has magnitude unity. If Q # oo,
then one can also show very simply that the reflection coefficient is zero if Q=Q.. These
are both standard results. Hence when coupling to a cavity, in the power input into the
cavity maximizes for a coupling hole radius such that Q=Q, that is for critical coupling.
If the coupling hole is too small, the cavity is under-coupled and power will be reflected.
Also if the coupling hole is too big, the cavity is over-coupled, and power will be
reflected. In practice, usually the coupling hole is drilled small, and is slowly increased in
size until critical coupling is achieved. Often the dipole approximation is not well
satisfied at critical coupling, and the empirical approach works better.

16



4. Coupling of Cavities to Each Other.
Now let us consider the other case of cavities coupled to each other but not to the

outside world. Say that a mode in cavity 0 is connected to one of n modes in cavity 1,
and vise versa. Then we have for the modes in cavity 0,

Vo((D + iﬁbn/ 2QOn - Won)Aon = 2ﬂ{'BOn*M(BOnAOn -Zm BlmAlm) +

Eon*P(EcnAon - Zm EimAim) } (41a)
and correspondingly for the modes in cavity 1,

V]((D + imln/Zan - (Dln)Aln = 27'5{'B1n*M(BlnAln - 2:m BOmAOm) +

Eln*P(ElnAln = zm EOmAOm) } (41b)

The self interaction terms on the right hand side of Egs. (41a and b) all give rise to a
decrease in the mode frequency (recall that M is positive and P is negative). -

Now consider the cross terms. If we redefine the independent variables as V24,
we can divide Eq.(41a) by Vo2 and Eq(41b) by V;"2, then in both Egs.(41a and b), the
quantity multiplying the dependent variable is simply for instance ® + i01n/2Qin - ®1n.
The off diagonal terms on the right sides of Eqs.(41a and b) are then divided by [Von]
so that the Hermitian property of the operator on the right hand side is preserved. Thus

Eqs.(41a and b) is a simple eigenvalue equation with a Hermite operator on the right hand

sides. Since a Hermitian operator has real eigenvalues, the coupling of the cavities to one
another give rise to frequency shifts among the normal modes, but do not give rise to
growth or damping. This is of course what is expected.
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5 Waveguide and Multi-cavity Coupling.
For the case of the waveguide (denoted w) coupled to the coaxial cavity (denoted

2), which can itself couple to the main cavity in either the TEg, mode (denoted 10), or
TE4; mode (denoted 14), there are 4 equations which describe the coupling. These are

Waveguide to cavity 2:
D'+ D" = 2iaZ/oc{ M[(D" - D)By; -B2,A2]}Bu, (42a)
Here we note that the waveguide mode only has a B, which can couple to the cavity. The

waveguide eigenfunction is given in Eq.(17). Also we assumed that the M tensor is either
a scalar or else has principle axes in the z and 6 directions. The next is

Cavity 2 to cavity 1 and the waveguide:

Va(@ + i/2Qz - )A; = 27{Mz[(D* - D)By, -B2,A2])Bo* +P| Bl > A,

+Mod Bar|2 A2 +M'od B'5 |2 A+ PP E'of 2 A, +
M’ B’ 2.*[B’2,A2 -B’012A10 - B’ 142A14] + M’geB’20%[B’26A2 - B’ 140A14]

-P’E’>*[E’2:A2- E14 A14]} (42b)
Cavity 1, TEo; mode:
Vi(® + i010/2Qi0 - ®10)A10 = 27{-M’2[B’10:A10 + B 142A14 - B'2:A2]B’10.*}  (42¢)

Cavity 1, TE 4 Mode:

Vi(® + i014/2Q14 - 014)A1s = 27{- M’ 5[B’10:A10 + B’ 14,A14 - B’2,A2]B’14,*
+ M’goB’ 146%[B’20A2 - B'146A14] - P’E’14*[E’2:As- E1ar’ A1a]} (42d)

Here, an unprimed value of P, M or eigenfunction means that these quantities are
evaluated at the coupling hole between the waveguide and the coaxial cavity, and a
primed value means these quantities are evaluated at the coupling hole between the

18



coaxial and main cavity. With the nature of the coupling chosen, these quantities are the
same at all four coupling holes between the coaxial and main cavity.

Thus we have 4 simultaneous equations for the 4 modes. Let us specify D", then
they can be solved for the four amplitudes as a function of frequency. Also they are
simple enough to solve numerically that many parameters can be easily varied. While
they will not give exact solutions due to the fact that the dipole approximation may not be
valid for coupling holes of the size that may be used in the experiment, they may well
give important in into the nature of the solutions and their scaling with many parameters.
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6, The Coupling at a Waveguide T.

The coupling of the waveguide to the coaxial mode, as shown in Fig. 1 is actually
like a waveguide T. If the scattering matrix S of the T is specified, one can solve for the
outgoing waves produced by a any incident wave. Waveguide T’s are discussed in
standard texts>® and they have certain symmetry and orthogonality properties. If the field
amplitude in each arm of the T is normalized so that the power flux in the arm is
proportional to the field amplitude squared (with the same coefficient of proportionality
in each arm of the T), then the S is a symmetric matrix. Also, of the T is lossless and
passive, energy conservation gives two additional relations. The first is that the sum of
the squares of the magnitudes of each column is unity. The second is that the dot product
of any column with the complex conjugate of any other column is zero.

In our configuration of the waveguide T, we will let 3 be the port of the input
wave, 1 be the port of the wave going in the positive 6 direction, and 2 be the port of the
wave going in the negative 0 direction. We assume only that the T, as shown in Fig 1 is
symmetric with respect to up-down reflection. This means that S13 = -Sz3 and Sy; = Sx.
Thus the scattering matrix, valid for any symmetric T has the form

S Siz Si3
Si2 S -Si3
Si3 -Si3 Sz

Let us say that the direct reflection in port 3 has magnitude 1, or in other words
S33 = I expix 43)

where O< 1<1. Then S;3 = Kexpif} where [(1- 112)/2]”2 = K. The unit magnitude of the
second column gives the result

181217 + [8ul? +K? =1 @
and the orthogonality relation between the rows gives
S12 = Sq1 + 1 expi(-x+2P) (45)

The scattering matrix relates the amplitude of the incident field in each leg to the
outgoing field in all legs. Let us specify the incident and outgoing fields in the input
waveguide as D* and D" as in previous sections. The incident and outgoing fields in the
circular waveguide are specified as Fi*, F;’, Fo" and F,'. They are normalized so that the
power fluxes are equal to a single constant time F or D squared. We will specify the
normalizations in terms of actual fields later.
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The resonator is a ring so the incident field into leg number one is simply related to
the outgoing field in leg two. In fact, we specify that

F,* = (Fy)gexpiA (46)

and the same for F,” and F,*. The A describes the propagation of the wave around the ring
resonator, and the g describes any damping along the way, for instance from Ohmic
dissipation or excitation of the waves in the main cavity. Then the first two equations of
the scattering matrix can be solved for the amplitudes of the outgoing fields in legs one
and two in terms of the incident field in leg 3. The result is

F," = -F,; = KD,expiP/[1-g u exp-i(y-A)] (47)

where y= 2B-x. If both g and 1 are close to unity, the denominator can have nearly
resonant behavior if y-A=27n where n is an integer. This means that a wave can be
trapped in the resonator. However as i1 approaches one, K approaches zero as (1- )",
so the mode amplitude approaches infinity as 11 approaches 1 no faster than (1- w2
However as 11 approaches one, the coupling hole gets smaller, and the dipole
approximation, which explicitly displays the resonant behavior gets more and more
accurate. Once the outgoing waves in each leg are known, the incoming waves are also

known via Eq.(46).

From the three incoming waves, we can find the reflection in leg 3, which is, R=
D/D,. Itis

R = expi(xk -y+A) { [expi(y-A)-g)/[1-g nexp-i(y-A)]} (48)

Clearly if g=1, or no dissipation on the wave as it goes around the waveguide, the
reflection coefficient R has magnitude unity. On the other hand if g is less than unity, the
waveguide T can also be designed so that the total reflection coefficient R vanishes.
Since g and 11 are both real, positive and less than unity, the numerator can vanish (ie at

critical coupling) but the denominator cannot. The condition for critical coupling is

g=n and y-A=27n (49)
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7. Coupling to the Main Cavity Through a Waveguide T

We would now like to develop a simple theory for the coupling to the main cavity.
As the wave propagates from the T it passes one of he coupling holes for which the dipole
theory is assumed to be valid. From the dipole moments of the hole and the field
amplitudes in the circular waveguide and in the main cavity, we can calculate the
reflection and transmission. This is turns out to be a matrix a matrix multiplication, but
one that involves the main cavity field as well as the transmitted and reflected field.
Going to the next coupling hole we get another similar matrix multiplication, and so on
until we get back around to the T. Here various input and output waves are then related
by the scattering matrix, and one can solve for all field amplitudes by inverting this series
of matrix multiplication. However here we formulate a much simpler, but approximate
scheme, which gives an approximate solution using only conservation of energy.

Before we begin however, we must properly normalize the waveguide modes and
relate them to the fields in the waveguide. The Power flow in the input waveguide (leg 3
of the T) is given by the integral of the Poynting vector. It is

P=cHL,|D|?/4nZ (50)

where all notation is defined in Sec 2B. Now consider the coaxial waveguide with the
modes traveling in the plus or minus © direction. The fields are defined as in Eq.(17)
except that

B, becomes Bg; Eg becomes E;; B, remains B,

We want to define the mode amplitude so that the power flux is cHL, | F| */4nZ.
However the coaxial waveguide might have different impedance and area, so that F does
not bear the same relation to the fields in the waveguide that D does in Eq.(17). If F’ is
related to the fields as in Eq.(17) for the main input waveguide, then the power flux is
cHL. | P | 2/41th, where Z, is the impedance of the coaxial waveguide. Thus F and F’
are related to each other by

F’ = F[ZHL,/ZbL.]"? (51)

Now let us parameterize the coaxial waveguide mode with a single parameter.
Let us say that the 8 dependence is given by expl[iop/c -B]© for the mode traveling in the
positive 0 direction, and exp-[iwp/c -B)0 for the mode traveling in the negative 6
direction. Here p = a + b/2. This approximates the mode in the circular waveguide with
the approximation for a linear waveguide with p@ playing the role of distance z along the
axis of the waveguide. Also, @/c is the free space wave number of the wave. Note that as
o varies through the coupling range, the phase of the driving wave at each dipole is now
approximately accounted for. The quantity b represents the damping of the wave as it
propagates in 6; the damping is caused by excitation of the mode in the main cavity as
well as damping due to Ohmic dissipation in the waveguide walls (which we do not
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consider here). We expect this model to be reasonably valid if 2n b <<1. If this is et
violated, at the very least, there would be corresponding a correction to the free space -
wave number which would also modify the phase of the wave at each coupling hole. :Zi

In terms of this quantity B, one can calculate the reflection coefficient R of the
input wave. That is R is given by Eq.(48), where g = exp-27b, and A = 2nwp/c. From the
given value of B and the waveguide T relations, we can find the propagating mode in the
coaxial waveguide as a function of 6. The amplitudes of the outgoing modes at the
waveguide T is F;” and F,', where these are given in Eq.(47). Then, as a function of 0, the
mode amplitude is given by

}
F(8) = F'{ exp[iop/c -B]0 — exp([-iop/c +b ]6 —2nb)}, 0< 6 <2n (52)

To get the field components, we first find F’ in terms of F, and then from the F’, we find
the various field components with the analogous relation to Eq.(17). Once we have these
field components in the coaxial waveguide (in terms of the parameter b), we can rewrite
Egs. (42c and d), but with the waveguide fields. This is a pair of linear equations for Ao

| and A4 and they can be easily solved in terms of D" and B.

i Once the field amplitudes in the main cavity are known, the power dissipated ineach

| mode is given by ®V;A%Q. Unless 1 is very near 1 and the mode is very resonant (in

‘ which case the dipole coupling theory should be quite accurate), the power dissipated will

i not depend very strongly on B. One can also find the power dissipated by simply taking it

| tobe (1-| R|?) cHLy, | D] 2/4nZ. If B =0, this power dissipated is zero because in this

| case, | R| 2 =1. Thus this expression for the power dissipated is a strong, increasing

! function of B. At some value of b they will be equal; this is then the value to use in this
approximation and it specifies the excitation of the cavity for the case of the input power

} coupled to the coaxial waveguide through a waveguide T.
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